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A]~lrgct--Th_re¢ mechanisms for flooding are suggested: (a) switching takes place between multiple 
stable statm of the system, some of which cause upflow, Co) the sTstem velocities exceed the 
propagation velocity of a Idnematic wave and (c) entrainment carries liquid above the feed even 
with the liquid film flowing downward. The mechanism which is applicable in any case is the first 
one to come into effect as the gas rate is increased. 

The idea of switching is also suggested as an explanation for the behavior of upward flowing 
tilms just above the flooding condition. 

INTRODUCTION 

Flooding in falling liquid films has been subjects of experimental and theoretical study for 
over 40 years. A wide variety of correlations have been proposed to explain this process 
where the liquid changes direction. These have been reviewed recently by Dukler & Smith 
(1977) and Tien & Liu (1979). In general the approaches are based either on dimensional 
analysis with experimental data used to fit the constants or on physically unrealistic 
mechanisms. Comparisons with data show they are unable to predict flooding under 
conditions si~nlficantly different from the ones used to construct the correlations in the 
first place. In this paper new processes for flooding and flow reversal are suggested based 
on the mechanics of unsteady film flow. The large waves which exist on the surface of 
falling films are shown to be a causative factor in the process but not the primary 
mechanism by which reversal takes place. 

SOME POSSIBLE MECHANISMS 

Consider a falling liquid film with countercurrent gas flow in a vertical tube. The liquid 
feed enters the tube somewhere along its length through a porous sinter with the top and 
bottom of the tube being the two limiting locations. At low gas rates all of  the liquid falls 
as a film as in figure I(A) and the gas liquid interface is covered with waves. With 
increasing gas rate a point is reached where drops and film are observed above the level 
of the feed. This is always accompanied by a sharp increase in waviness on at least part 
of the liquid film falling below the feed. With the feed located at the top of the column 
as in figure I(B), the result will be the initiation of flooding. However, if a section of tube 
is located above the feed as in figure I(C), then the droplets lifted above the feed deposit 
on the wall and  form a film which falls. For short tube lengths it is possible to observe 
flow out the top since the tube is not long enough to effect complete deposition. For longer 
lengths the deposition will be more complete and negligible carryover out the tube will take 
place. Then in order to reach the point of flooding, the gas rate must be increased until 
the interracial shear is sui~cient to lift the film. As shown in figure I(D), flooding takes 
place for this type of system with liquid flowing upward as a film and as droplets. Further 
increases in gas rate result in increasing fractions of the feed liquid flowing upward until 
a gas rate is reached at which no liquid flows downward at all. 

The condition of flooding is always accompanied by a sharp rise in the axial pressure 
gradient in the sections of tube both above and below the feed. This rise is not gradual 
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for flooding. 

with increases in gas rate. Rather, one observes a sharp discontinuity for each liquid rate 
as a critical gas rate is exceeded. 

Three possible mechanisms have been suggested by which flooding as described above 
can take place: (A) Wave motion; (B) Entrainment; and (C) Film flow. 

(A) Wave motion. The  suggestion first made by Hewitt & Wallis 0963) that flooding 
is caused by large waves on the interface has been widely accepted. The argument which 
led to this idea has two parts. 

• The initiation of flooding is always accompanied by the appearance of large waves 
somewhere along the interface on the film below the feed. 

• If one calculates the velocity distribution in the smooth falling film using the 
measured pressure drop to obtain the interfacial shear, the interfacial film velocity is 
determined to be downward just below the gas flow rate at which flooding takes place. 
Thus, it was concluded that flow in the film cannot be responsible for the flooding and 
the mechanism must be related to the presence of the waves. 

Conceptually, the appearance of a large wave cannot account for the flooding process 
uuless there is a mechanism by which the liquid in the wave is lifted above the feed. Two 
such mechanisms have been suggested. 

(1) Once a finite amplitude wave is formed, it continues to grow until it bridges the 
tube and the liquid is then carried up as a slug or as an entrained phase. Fundamental 
to this mechanism is the concept that the gas velocity needed to lift the drops or slugs once 
formed from the wave is less than the velocity needed to generate wave growth. Perhaps 
this idea had its origin in the work of Schutt (1959). He explored the stability of the liquid 
film using Orr-Summerfield analysis to find the interfacial shear at which waves would 
grow. It was assumed that once the growth was initiated the process would continue until 
bridging occured. His calculated shear rates at flooding were not in agreement with 
experiment. 

Shearer & Davidson (1965) calculated the amplitude and shape of a standing wave by 
assuming gravity and surface tension were balanced by the impact pressure due to gas flow. 
They calculated the gas rate at which the wave becomes very large and thus presumably 
results in bridging. Agreement with data at a variety of conditions was poor. A recent 
approach to this idea of a wave growth mechanism for flooding was presented by Zvirin 
et al. (1979). 

Suggestions that bridging takes place have appeared repeatedly in the literature over 
the past 15 years, with recent examples being that of lmura et al. (1977) and Duffy et al. 

(1978). However, measurements of the maximum film thickness as illustrated in figure 11, 
part I and by Suzuki & Ueda (1977) convincingly demonstrate that bridging simply does 
not occur. Some photographic evidence (Hewitt & Whalley 1980) suggests that for high 
liquid flow rates occasional bursting of a large wave takes place to form a locally dense 
droplet phase which is carried upward by the gas. However, under other conditions such 
as those discussed in part I, at low liquid rates no such bursting takes place. When flooding 
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takes place in large tubes, the possibility of bridging must be rejected simply from a 
consideration of the amount of liquid necessary to fill the tube compared to the small 
amount of liquid flowing in the film. 

(2) The large waves which are formed are kinematic, thus carrying mass. As a result 
pf shear and/or form drag from the gas, these waves are propagated upward and carry 
the liquid past the feed point resulting in flooding. In order to predict the conditions for 
flooding for this model, it is necessary to determine the gas rate at which the wave will 
just become stationary. At gas rates greater than this value flooding will take place. 
Cetinbudaklar & Jameson (1969) attempted to predict the gas velocity at which an unstable 
standing wave would develop by the use of a stability analysis of the Schutt type. It is 
assumed that at higher gas velocities the waves would move upward, hence flooding would 
take place. However, careful observations show that flooding can take place under 
conditions where the waves flow downward. It is a curious fact that no measurements have 
been reported of the velocity of these large waves as the condition of flooding is reached. 
Hewitt & Wallis (1963) report on the velocity of the falling waves and show that there is 
little or no influence of the counterflow air. However, these measurements were not carried 
out for air rates which approached the flooding conditions. 

It must be concluded that despite its wide acceptance, the evidence that the flooding 
process is connected in a primary way with the wave motion or growth is purely 
circumstantial. 

(B) Entruinment. ‘be appearance of entrained drops at or just below the gas rate at 
which flooding takes place suggests a second possible mechanism. In this case the waves 
play the role as the source of entrainment. Flooding takes place when the gas rate is 
sulhcient to lift the largest drops upward against gravity. Underlying this concept is the 
idea that the gas velocity necessary to form the large waves and to tear off the droplets 
is less than that necessary to lift the largest drops out of the tube. Thus, in order to predict 
entrainment it is necessary to explore the drop mechanics rather than the wave mechanics. 

The objective in this approach is to calculate the minimum gas velocity needed just to 
suspend the largest stable drop. A balance between the drag due to gas flow around the 
drop and gravity acting on the drop produces the relationship needed for gas velocity in 
terms of an unknown drop diameter. But this maximum stable drop size can be expressed 
in terms of a critical Weber number and the result is then 

0 4Wec b&k - ~dl’~’ 
G= -Ed [ 1 PGW 

where g is the acceleration due to gravity, d is the liquid surface tension, pL and pG are 
the densities of the liquid and the gas, C, is the drag coefficient, We, is the critical Weber 
number, and UG is the true mean gas velocity which is related to the supet&ial velocity 

UC’ through the voids, Up = U,l. For the gradual accelerations which occur when a drop 
is formed from the wave (near the flooding condition), We, =*30 (Sevik & Park 1973). 
Furthermore, for large drops C,, II 0.44. With these substitutions one obtains 

u,l = 3.1 MP‘ - Pcll”’ Q . 

PGW 

Now consider the case of low liquid rates or large diameter tubes where a approaches 
1.0; the result is identical in form to the flooding correlation recommended by Pushkin & 
Sorokin (1969), (sometimes called the Kutatelcdze correlation) with the constant they 
suggested being 3.2. Considering the fact that Pushkin’s correlation was derived from 
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dimensional analysis and experiment and that the above equation came completely from 
a theoretical model, the agreement is remarkable. Furthermore, this model is in good 
agreement with the data of part I of this paper and with the results of  Hewitt (1977) for 
various fluid properties and tube sizes. 

Notwithstanding the success of [2] for these conditions of  test, other measuremen¢ 
have shown that the Kutateladze equation does not describe the true behavior under a 
variety of conditions. Because of its close correspondence with Kutateladze, this model will 
also fail under those conditions. Furthermore, when studied in detail, this entrainment 
model predicts unreasonably large drop sizes under those same conditions. Thus, it clearly 
is not a fully general model for the flooding mechanism, although this mechanism for 
flooding is likely to exist under certain circumstances. 

(C) Film flow. The possibility of upward flow in the film as a mechanism of flooding 
seems to have received comparatively little attention in the literature until recently since 
this idea was rejected by Hewitt & Wallis (1963). Some tentative and inconchufive 
explorations in a related study of upward annular film flow are reported by Nicklin & 
Koch (1969). Solevev et al. (1967) integrated the momentum equations for smooth laminar 
film flow for the conditions of upward gas flow and both upward and downward film flow. 
The result was a relationship between the shear stress at the wall and interface, the pressure 
gradient, the film flow rate and film thickness. The solution displayed two branches, one 
for concurrent and one for countercurrent upward flow which approaches each other 
asymptotically. It was suggested that the location of the asymptote characterized the 
flooding point, but no physical basis was presented for this premise and the detailed data 
on film thickness  a n d  shear  o f  p a r t  I show the premise to be invalid. 

Richter (1981) as well as Taitel et al. (1982) present steady state film models for smooth 
films. Both leave questions as to the mechanics of flow at flooding and their results depend 
strongly on the form of the curve fit to experimental interracial shear and/or wave 
characteristics. 

In this paper the concept of an unsteady state mechanism for flooding is explored along 
with the idea that large waves which are observed at the flooding condition are the result 
not the cause of the actual process of upflow in the fihn~ 

A THEORETICAL ANALYSIS  OF F ILM FLOW 

The momentum equations and reference states. For an incompressible, Newtonian fluid 
the equation for steady, laminar, one dimensional motion is 

I~ L 02u 
PL OY ~ I- ~g = 0 [3] 

where 

Idp 
g I ~  

= p, dx, 
g 

g and dp/dx are the acce_3eration due to gravity and the pressure gradient in the downward, 
x direction, y is the coordinate direction normal to and measured from the wall, while PL 
and/~L are the density and viscosity of the liquid, and u is the local velocity in the film. 
The liquid interface is known to be highly wavy as discussed above, and this wave action 
increases as the condition of flooding is reached. However, in order to explore the film 
mechanism for flooding, [3] is applied to a liquid film whose interface is assumed to be 
smooth. This is equivalent to the assumption that the effect of the wave motion on the 
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velocity in the film averages out over time and position as if the film remained smooth. 
The fact that the measured mean film thickness is about equal to the theoretically 
calculated one below the flooding point (see figure 8 of part I) suggests this may be a 
reasonable assumption. However the condition above flooding may be very different as 
will be discussed subsequently. As difficult as it is to accept this concept in view of recent 
studies (see Dukler 1977) it is necessary to take this approach to fully test the film 
mechanism. 

Using [3] we explore the existence of certain reference states of the film which can be 
physically meaningful in understanding the mechanism of flooding (see figures 2-4). 

• The "N State": the free falfng film, 
• The "O State": the falling film with zero velocity at the interface. This represents 

a limiting condition for uniform downflow. Higher interfacial velocities result in upflow 
at some point in the film. 

• The "U State": the rising film with zero velocity gradient at the wall. This represents 
a limiting condition for uniform upflow. Lower interfaciai velocities will result in downflow 
at some point in the film. 
As will be seen, many other states can exist but they can all be viewed in relation to these 
reference states. 

In most practical cases the pressure gradient is negligible compared with p ~  and 
--, 1.0. For vertical flows, assuming no-slip at the wall where y = 0 and zero shear stress 

at the liquid-gas interface, the Nusselt velocity profile is obtained, which by further 
integration over the film thickness yields the Nusselt film thickness, 6~, 

-,..y lin ~ II --,.y I o 

u u u 

QL*QF QL,QF QL=QF 

F,O O< F<I.O F "LO 
"N" STATE ~ f  STATE 

Figure 2. Velocity distributions for uniformly downflow. 
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Figure 3. Film flow with velocity reversal in the film, 
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Figure 4. Ul~ow in the film with QL" - Qp. 
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where QL is volumetric flow rate in the film per unit perimeter and equals the external liquid 
feed rate per unit perimeter, QF. 

If upward gas flow takes plaoe counter to the falling film, the velocity profile is distorted 
in such a way that the local downward velocity near the interface is reduced due to the 
gas shear. With sufficient opposing shear, the velocity at the interface approaches zero. 
Under this condition of zero interfacial velocity, the velocity profile is 

PL~0g I 
u = ~ -  (a~ - y b  [5] 

/~L 2 

where ~0 is the film thickness at this state. This thickness can be determined by integrating 
[5] over the thickness ~0 to yield 

[6] 

Using [5] to obtain the velocity gradient, it is seen that the interracial shear stress at this 
point is 

p,#,o#ao [7] 
t ° =  2 

With further increases in interfacial shear the velocity close to the interface can, in 
principle, reverse and partial upflow results. If the shearing effect is large enough, the U 
state is reached where the shear is just sufficient to lift all of the liquid in the film. At this 
point the shear stress at the wall is zero, the film thickness is ~. and the upflow velocity 
profile is given by 

PL@.gY 2 u = [81 
~L 2 

which by integration yields 

p,  \ '~  
• [9] 

The interfacial shear needed to reach this state is 

t . =  - p L ~ ' 6 . .  [I0] 

Some comparisons are useful: 

,o =',, 

_6o = {'2 
a. ,s. \ ~0}  " 

It is of interest to explore the velocity distribution and film thickness for states other 
than the three reference states for arbitrary values of interracial shear. Because there is still 
insufficient information to relate the shear to operating variables, it is convenient to make 
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these calculations in terms of the shear. As will be shown, given a value of the shear there 
exist multiple solutions to the equations for film flow for certain ranges of shear stress. 

General solution of the flow equations. Define the interfacial shear :t, in terms of its 
multiple of % at the zero state 

2T t 
F - ~/Xo = [11] 

PLO0g60 

Integration of [3] then produces the velocity distribution for the general case 

[12] 

Note that u > 0 indicates downflow while u < 0 designates upflow. Integration of the 
velocity over the film thickness 6, yields 

PLdPg63(1-3 3 4 ~ o ~ F )  [13] 
QL= 31~L \ 

QL is the liquid flowing along the wall. The feed is introduced somewhere between the top 
and the bottom of the column at a rate Q j,. In the absence of interfacial shear when all 
liquid is flowing down QL -- Q~ If the shear is high enough so that all the flow is upward, 
then Q~ = -QL.  Between these two cases there are a variety of possibilities as will be 
demonstrated in what follows: 

(A) Uniformly downflow (0 < F <_ 1; u > 0, QL - Qr). This situation is pictured in 
figure 2 where for all values of y, the velocity is always positive, or downward directed. Since 
QL = Q~, it is possible to normalize [13] using [4] to obtain 

Rs3 - O.75 3~/~ R2  ~ -  F - ~  = O [14] 

where Rs = 6/6~,, the normalized film thickness. In the range 0 < F < 1 this cubic equation 
has only one real root and the solution for Rs is shown as curve N-O in figure 5 for the 
case of 0 = 1.0. The data reported in part I of this paper show that 0 is seldom less than 
0.95. For values of ~ < 0.9 the results will be negligibly different from those reported in 
figure 5. 

(B) Downflow with circulation (F >__ 1, ut ~ O, QL - Qr). As the shear is increased past 
reference state 0, the distribution can shift so that the velocity at the outer portion of the 
film changes direction to upflow. When that happens there are two possibilities as 
illustrated in figure 3. In figure 3-1 the portion of the film where u < 0 flows up above 
the feed. However, the shear induced by the gas is insufficient to lift the liquid as a rising 
film. This is equivalent to the situation pictured in figure 1 (C). Under these conditions the 
net liquid flowing down is Qe, but the liquid flowing upward falls back and adds to the 
liquid feed as an internal recycle. The velocity distribution for this condition is described 
by [12] and [14] is equally valid. The solution for this case given as curve OB in figure 5. 

Designate YM the distance from the wall to the plane of zero velocity gradient. Then 
the amount flowing down Q~ and up Q,, in the the film are 

c2,- 2 pLCg y,? [I 5a] Q~=Jo u d Y = 3  /JL 
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Equation [15c] for Yw is obtained from the condition that at y =YM, du/dy = 0. For the 
case of downflow circulation illustrated in figures 3(A) and I(C), the material balance over 
the film requires that 

Q. = QF-- Q~-IQ.I .  []6] 

(C) Split flow (F > 1.0, UL ~ O, QL/QF < 1.0). Figure 3-2 demonstrates this situation. 
As in Case (B), the velocity in the liquid is downward near the wall but reverses in the 
film near the interface. However, splitting takes place when the shear due to gas flow is 
suffacient to prevent that liquid which rises above the feed to fall back and circulate. When 
this takes place the material balance requires 

QF = Qo + [Q.I. [17] 

Substituting for QD and Q, using [15] and then normalizing with [4] gives the relationship 

R~ - 7----~,V/6--~ ~ - -  R~ + 4F2 3 0.~/'6-~.25 ~-2 RN - 1F- ~ ~°2 [18] 

The solution to this equation for ~ = 1.0 is shown in figure 5 as the curve O-D-U. A 
portion of the solution is shown in the insert with an expanded F scale. It is important 
to note that (for ~ = 1.0): 

• Solutions to this equation exist only over the region 1 < F < 1.67. 
• The maximum possible value of  RN is 1.89. 
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• In the region ~ < F < 1.67, for each F, two physical real solutions exist (see insert 
with expanded F scale). These correspond to two velocity distributions which satisfy the 
force balance and thus, two pairs values of Q, and QD. 

Thus, if the mechanisms for flooding involves splitting of the flow, then it can take place 
only under the range 1 < F < 1.67. However, as seen from figure 5, if 1 < F < 3/~, two 
values of RN are possible; one if the flow splits as shown from the curve O-D and one 
if the flow recirculates as given by the solution O-B. If the conditions are such that 
1.587 < F < 1.67, then three solutions for RN are possible, two if the flow splits as given 
along the curve D-U and one if there is recirculation, as given by O-B. 

It is important to understand the physical concepts involved in development of [18]. 
Equation [14] has been reported previously in the literature (Feind 1960) although the 
relationship between QL, Q, and Qo, and especially the multiple solutions, has not been 
made clear. However, [18] represents a new solution to this problem never before reported. 
It cannot be obtained by direct integration of the velocity distribution because it requires 
that the upflow and downflow be uncoupled as implied by [17]. 

(D) Upflow (F > ~r~, u ~ 0, QL - - QF). A general relationship between R~ and F can 
be obtained from [13] by recognizing that for upflow Q L = - Q ¥ .  Then [13] can be 
normaLized by 6N through [4] to obtain 

R N3 -- O. 7 5 3v/ 4 R N2 ~-~- F + -~ ffi O. [19] 

In contrast to [14] for uniform downilow which has only one real root, this equation can 
be shown to have three real roots, one of which is negative and thus nonphysical. The 
solution to this equation for ~ = 1.0 appears as curve EUC in figure 5. The EU branch 
represents uniform upflow (figure 4-2). The UC branch is upflow circulation (figure 4-3). 
The branch point, U, is the limiting case (figure 4-1). At a value o f F  = 3~/~, [18] for split 
flow displays two solutions for Rs, one of which is the value of R, as predicted by [19]. 

As F becomes sufficiently large the downflow and upflow circulation curves beome 
asymptotic to each other. The asymptotic curve (evaluated from either [14] or [18] at large 
F) i~: 

2 
RN = 0.75 ~ F or z, ffi ] pLg6dp. [20] 

This is identical to the criterion used ty  Solevev (1967) for the onset of flooding. Now it 
is possible to see that the physical mechanism implied by Solevev's criterion is that flooding 
takes place when the flow switches from downflow circulation to upflow circulation. As 
will be shown below, flooding takes place at conditions very different from this one. 

A comparison of film flow mechanisms. Each of the mechanisms A-D discussed above 
controls the characteristics of the flow. Figure 5 shows the variation of dimensionless film 
thickness with dimensionless interfacial shear. Figure 6 displays the liquid flowing down, 
Qz,, relative to the feed, Q,., .as a function of F for each model. Along the line N-O, all 
the liquid falls. Along curve O-D, splitting of the flow takes place with the amount flowing 
downward decreasing with increasing shear until the two streams are equally split at point 
D where F ffi 3V/4. The curve O-B represents downflow with circulation. For F > 1.0 the 
internal circulation causes the liquid falling below the feed to ex__~,d_ Q~, In a similar way, 
if the mechanism is upflow circulation, the liquid near the wall in downflow could result 
in Qo/Qr varying with F as shown in curve U-C. Of course, for uniformly upflow QD is 
zero as shown along the curve U-E. 

Of particular interest are the curves for the wall shear stress normalized by the shear 
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Figure 6. Distribution of feed with interfacial ahe~r. 

stress at the wall for a free falling film, zw~. These are shown in figure 7. The results suggest 
that dynamic wall shear stress measurements would be a useful tool to discriminate 
between the mechanisms which actually exist. 

F I L M  F L O W  A N D  F L O O D I N G  

In this paper two new mechanisms for flooding are suggested, both based on the 
existence of  film flow: (A) Switching between steady state solutions, and (13) Limiting 
kinematic wave propagation velocity. The model which controls for any given condition 
is the one which exists at the lowest gas flow rate, or is the lowest of  the transition 
conditions. 

(A) Switching model 
This process is pictured as a dynamic one with the instantaneous interracial shear, the 

film thickness, velocity distribution and in some cases flow direction oscillating with time. 
Furthermore, it is suggested that the apparent presence of  the large waves on the film at 
flooding is the result of switching between different states of  the system having different 
film thicknesses. 

At zero gas flow the liquid moves down the wall as a film with the surface covered by 
a stable wave structure. With increasing countercurrent gas rate the wave amplitude as 

TW 
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F igure  7. W a l l  shear  stress v a r i a t i o n  w i t h  f o r  th© v a r i o u s  mode ls .  
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indicated by the RMS iflm thickness (figure 13, part I) increases but not enough to have 
a significant effect on pressure gradient or thus on T~ or F. As the gas rate for flooding 
is approached, the wave amplitude increases dramatically and two events take place: (1) 
the interfacial shear increases markedly causing a step change in F; and (2) entrainment 
starts (figure 6, I). If this change causes F to exceed 1.0, then multiple states can exist in 
the film. For example, with an increase in F into the range 1 < F < ~ the film thickness 
can oscillate locally between the solutions given by curves O-B and O - D  of figure 5. Thus, 
it would appear as if large waves are formed and move up the film but, in fac4 the film 
thickens and flows are controlled by the solutions to the film equations. 

Increased gas rates are not necessarily accompanied by increased shear stress, but 
rather by a change in the fraction of time each state exists. If the jump in shear takes place 
such that 3 ~  < F < 1.67, then the system can oscillate between three states, two along 
branch D U  and one along OB. 

An alternate speculation involves the possibility of a limit cycle. Figure 8 demonstrates 
this model. At gas rates below the flooding point F remains low, say, at point 1. Once the 
gas rate causes growth of the existing wave structure, F increases drastically to point 2. 
The film thickness increases but so does the interracial shear as a result of the thicker film 
and F jumps to position 3. At this state the film thins resulting in decreased shear and F 
goes to point 4. If the conditions at 4 generate a shift in F to point 2, then the limit cycle 
is generated. 

It remains to understand the driving force for this process of switching. One possibility 
is the entrainment carried by the gas. These large drops, frequently larger than the mean 
film thickness, moving with velocities much higher than the liquid provide the needed 
source of mass, energy and momentum for changing from one state to the other. 

It is important to understand the difference between this model and a wave model for 
flooding. Both are initiated by growth of already existing waves but the mechanism for 
reversal is completely different and models for predicting the distribution between up and 
downflow would likewise be different. In the wave model the increased gas rate causes the 
waves at the interface to grow. Then they eigher become large enough to bridge the tube 
and the liquid is forced upward as a slug or the large waves propagate upward along the 
film. As pointed our earlier, evidence for bridging or upward flow of the waves is meager. 
In the film model the increased wave amplitude causes a sharp increase in interracial shear. 
The high shear causes upflow by shifting the film to a condition at which multiple states 
are possible, some of which result in net upflow. If the states are unstable ones, then the 
observed film thicknesses would oscillate between these possible states with the peaks and 
valleys of the surface profile representing the various possible states for film flow. The rate 
of upflo w of the liquid would be determined from solutions of the film equation and some 
knowledge of the distribution of time between these states rather than from solutions of 
the equations of motion for large roll waves which are, as yet, poorly understood. 

F 

Figure 8. A limit cycle in film flow. 
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Qualitative evidence which appears to support these speculations have been developed 
from an analysis of the time varying film thickness and pressure gradient data of part I. 

Mean and XMS.fiim thickness. Table I summarizes some data on the mean and RMS 
fluctuation in inteffacial shear and film thickness at the flooding point for the four 
experimental feed rates described in part I, test section configuration B. At  each of the 
transitions the measured pressure gradient and film thickness were used to calculate ~ and 
F using 

dP (D - 26) [21] 
zt = ~ 4 

and [11] for F. The RMS fluctuating gradient was similarly translated into an RMS 
fluctuation in F, F ~ s  and this was used to characterize the range of the variation in F 
as Faus. Corresponding tabulated values of RN and (R~v)aus were calculated from 
experimental values of  6 and 6tus at the flood point using Rx ffi 6/6s. 

Consider Rer = 310. At the flood point the range of  F is  1.58-2.48. In order to compare 
with theory these values of  F are used to predict R~ and (R~)tus and these are compared 
with data. The switching process is pictured as follows. Just below the flood point there 
is an increase in surface roughness and F increases to 1.58. Entrainment takes place, 
deposits liquid above the feed which falls and establishes a downflow circulation. The film 
thickens to satisfy a solution along curve OB and displays a value of Rs ffi 2.17 for 
F = 1.58. However, when the film thickens a sharp increase in interfacial shear takes place 
and F increases to F == 2.48. There simply is not enough liquid inventory to permit further 
thickening of the film along curve OB so the system switches to another solution along 
curve UE where Rs = 0.67. As the film thins the shear decreases to 1.58 again and the 
process continues. Of  course, intermediate states are possible as will be discussed below, 
but for a simple qualitative picutre this two point switching is presented. A simple 
theoretical mean value of  RN would be the arithmetic average of the two states or 
RM ~ 1.42. Some measure of the fluctuation would be the difference between the mean and 
each state or (RN)]u~ ~--0.75. These are seen to agree quite well with corresponding 
experimental values for the two lowest feed rates, R e v -  ~ 310 and 776. 

Table !. Comparison of normalized mean and RMS film thiclmeu at the flooding trmaition 

VALtJES B~qE9 ON O F [ 
F 

Fms/F 

RAN6E OF F 

% 

(R.)ms. 

oo/ov 
V~.UF.S eu~CD ON O0 ] 

RAN6E OF F 

P~ 

R N 

( ~ ) m s  

LIOUID FIE][D REYNOLDS NUMIER 

340 ] 776 1 1552 

2.03 1.73 0.88 

0.22 0.19 026 

LSe-2.40 1.41-2.05 065-1.14 

1.59 1.48 1.02 

0.73 0.67 0.~0 

1.00 IDO 0.96 

TNEORY 

1.42 1.40 

0.75 0.68 

31(:~ 
DATA 

1.52 

0.19 

L23-LSI 

1.19 

0.52 

0.56 

1.40-2.19 

1.44 

064  

0.59 1.01 

0.30 0.25 

029-089 07'3-1.25 

L03 0.92 

0.53 0.40 

0.93 0.31 

I.I1-1.85 

1.36 

1,40 L28 

0 6 5  0.44 
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The existence of two flooding type transitions for the higher flow rates was discussed 
in part I. Clearly this switching mechanism cannot apply at the first transition since, as 
shown in the table F < 1.0 at flooding and  under this condition multiple states csmnot exist. 
An alternate film mechanism for this transition will be discussed below. However, the 
second transition is approximated reasonably well by the switching theory. Since the 
second transition takes place at a downflow rate less than the feed rate, in order to make 
comparisons it was necessary to recalculate 6N and % on the basis of Qo rather than Qr 
and thus determine experimental values for the range of F, Rs and (RS)RMS in order to 
make the comparison with theory. 

The wave trace. This switching model suggests that the observed variation of film 
thickenss with time is the result of switching between various states of the system rather 
than the manifestation of the presence of large roll waves. Figure 10 is a section of  a typical 
time trace of film thickness recorded at station A taken at the flooding condition for 
Re~ = 310 using test section configuration B. Figure 9 shows the theoretical solutions for 
6 vs z, for this flow rate. The vertical dashed fines represent the measured mean and shear 
and the range of shear as defined by Tt + (Zt)XMS. The intersections with the curves represent 
the possible states of the system. A number of these states is located as horizontal lines 
on figure 10. Not only do these theoretical solutions effectively bound the observed 
thickness but repeated appearance of certain states is apparent. For example, the C state 
which represents zero wall shear stress is repeatedly observed. Other sections of the time 
trace for this same flow rate give similar results as do similar constructions made for the 
other three flow rates at the flooding condition. For the two higher flow rates this 
agreement is seen in each case only for the second of  the transitions which, as discussed 
above, is the transition attributed to the switching mechanism. This result suggests that 
the large variations in amplitude of the film may be viewed as the result of arriving at 
different states rather than the existence of a well developed wave structure on the surface 
of the liquid film. 

Wall shear stress. The switching theory can also explain the apparently anomalous 
values of wall shear stress observed at the flooding point. ~, was calculated from measured 

.125 I | I : 

.025 i G , ,, 

" 

.050 • ~ 
i 

I I 
• 3 K ) 1  i 

.02S j ~ ~  ' ' - 

I I I 
0 25 50 75 100 

rl (d lms /H .  cm) 

Figure 9. Location o f  ~__~dy states. 

l ~ ,  ---:, 

Figure 10. Wave  trace compared with location o f  steady state. 



612 D. MOALEM MARON and A. E, DUKLER 

values of film thickness and pressure gradient from 

[22] 

For example, figure 11 shows values o fz ,  for the falling film at Re¥ ffi 310 calculated from 
experimental data. At the flood point the mean shear drops sharply to zero as shown. 
However, since the flow is downward at this condition, it is difficult to imagine a velocity 
distribution which could generate zero or negative wall shear. The concept of switching 
makes this understandable. Table 1 shows that the range of  F at flooding for Rer--  310 
is 1.58-2.48. Identifying F -- 1.58 with the curve OB of figure 7 and 2.48 with the curve 
UE and picturing the switching process suggest that the time average shear will be nearer 
the zero. The same conclusion is obtained at the flooding condition for other flow rates 
where the switching theory applies. 

(B) Kinematic wave model 
The transient behavior of two phase flow can be characterized by the time and space 

variation of the voids or the liquid holdup. Using ideas originally introduced by Lighthill 
& Whitham (1955), it will be shown that flow limitations can occur when the velocity of 
propagation of  a kinematic wave becomes zero. The continuity equation for the liquid is 

(1 - ~)x + ~ [(1 -- ~)OLJt ---- 0 [23] 

where ~ is the cross sectional average voids and OL is the average film velocity. Note that 
QL -- (D/4)(1 - a)OL and the second term in [23] becomes (4/D)(OQzJdx)t. The wall flow 
rate can be expressed as QL ---- QL(~, ~L) from which it follows that 

), k o,/.,  
[24A] 

But ~ = ~ ,  qo) where qo is the volumetric flow rate of gas. For constant ¢o this equation 
becomes 

[24B] 

-__ \ 
R ~ ,  310 

* ~ 0  I I I 1 I I ~ 1 4 

W o kg/mc xlO 2 

Figure ! 1. Var ia t ion o f  wall  ~ e ~ "  wi th  gas rate. 
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Setting 

[25] 

Then [23] can be written as 

a 
at 0 ( 1 - = ) +  C,c~x ( 1 - = ) = 0  [26] 

where Cx is seen to be the downward velocity of propagation of a kinematic wave and 

[26] expresses the "conservation" of liquid holdup. 
When Cx becomes zero then disturbances in (I -=) needed to accomodate random 

fluctuations in flow rate cannot propagate along the tube and flow limition or flooding 
can be expected to take place. Zuber (1964) applied the theory to dispersed two phase flow. 
In this paper its application to film flow is considered. 

We search for the relationship between zt and 6 dictated by the condition Cx = O. 
(OQL/a=),, and (aQzJ&t), can be evaluated from [13]. The term, (Ozt/a=)q6 can be found from 

f~ 17, 2 f~poqJ [27A] 
z,=~po o = 2=2A2 

and this gives 

[2'70] 

The result obtained after substituting for these partial derivatives into [25] and setting 
C~ = 0 is: 

2pLgD 

Ld(,  ID)_J,  + 
8 2 

F 

[283 

Thus, the locus of points in the z~ - 6/D plane at which flooding takes place as a result 
of the inabifity to propagate a local change in film thickness is given by [28]. It is now clear 
that a quantitative description of this condition depends on the particular relationship 
which exists between ft and 6/D as indicated by the first term in the denominator. 

A variety of empirical equations have been proposed which related ft and 6/1). 
However, *as discussed in part I, these do not appear to describe the true behavior of the 
system. Their use in [28] cannot be expected to give realistic results. Instead, to test this 
idea, the experimental data in this study was used to estimatef~ vs (6/D) along the flooding 
curve using [27A]. The results shown in figure 12 clearly reveals two different relationships 
for high and low rates respectively. 

Now this information is used to determine if flooding takes place as a result of a 
limitation in the rate of propagation of a disturbance in liquid film thickness. Figure 13(A) 
shows the situation for the highest liquid rate. The solid curve, N-O corresponds to the 
same curve in figure 5, but in this case is presented in d i m e n s i o n a l  c o o r d i n a t e s .  It is the 
solution to the momentum equation for downflow. The dashed curve is a mapping of [28] 
(using figure 12 to find dfdd(6/D)) and is the relation between 6/D and "q acrom which 
no propagation of liquid is possible. Now consider a small disturbance in 6/1). 
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Figure 13. Flow limitations due to kinematic wave propagation m e ~ .  

Differentiating [27A] with respect to (6/D) and substituting for dfdd(6/D) from figure 12 
shows that this "'operating" line relating 6/1) and ~ is essentially horizontal, shown as a 
dotted line. Thus, a very small disturbance in 6/D will result in a large change in :t. The 
process is pictured as follows. Just below the flooding point there occurs an increase in 
film thickness fluctuations as shown in figure 13, part I. This causes a sharp increase in 
shear stress as reflected by an increase in pressure gradient as shown in figure 7, part I. 
If z, is large enough to move the shear past the "O"  point, then flooding takes place by 
the mechanism of multiple states as discussed above. However, if it is not large enough 
to ex__ceed_ ~0 but is large enough to intersect the curve for [28], shown as zx in the figure, 
then case shown in figure 13(A). Flooding must then initiate at the point of  interaction 
between the operating curve, [27A], and the kinematic limiting curve, [28]. In fact, the 
theoretical value of ~x -~ 29 dynes/cm. The value of ~l for flooding meamm~ experimentally 
is 28.5 dynes/cm. 

A different situation is shown in figure 13(B) for the lowest liquid rate. Just before 
flooding in this case there is also a sharp increase in the film thickness fluctuation. 
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However, because this is taking place at a much higher gas rate, a larger/Iz I results. In 
fact, at Ret.= 310, A~t= 46dynes/cm. This increase carries the system well beyond the 
kinematic wave limiting condition at ~x into the region of  multiple states. Of course, if as 
a result of film thickness fluctuations Azt is smaller than either zx or Zo, then flooding does 
not occur. 

It is of interest to notice the difference in the character of  the film thickneu cltrves for 
these two mechanisms. From figure 9, part I, it is seen that when the multiple states 
mechanism exists the film thickness increases sharply at flooding. When the kinematic wave 
limitation mechanism exists as for Rer = 3105 then the film thickness decreases at floodinf, 
as would be expected from the inability of the system to pass the liquid down. 

S W I T C H I N G  T H E O R Y  A P P L I E D  T O  U P F L O W  I N  F I L M S  

It has long been reco~,niTed that there exists a serious discrepancy between the results 
of experiment and theory for upward film flow. Nicldin & Koch (1969) clearly demon- 
strated that measured film thicknesses were in poor agreement with the two theoretical 
solutions which would exist for any condition of interfacial shear. They described the 
agreement as hopeless! 

Figure 14 shows the experimental data of this study for mean film thickne~ vs mean 
interfacial shear for concurrent upflow. Data for the four flow rates in test section 
configurations II and III (see figure 1, part I) are included. The solid curves represent the 
theoretical solutions for the four flow rates. There appears to be no way to explain this 
result except with the concept that the film thickness switches in order to satisfy the two 
possible solutions with the resulting mean value of  the thickness falling between these two 
states of the system. Once again, this suggests that the dominant structure on the surface 
of the film is that due to the switching between states, not due to the presence of  a well 
developed wave structure. Waves undoubtedly exist; however, the changes in amplitude 
associated with switching are large compared with that due to wave motion and as a result 
true wave action will not be observed until the film becomes thin and the amplitude of 
the switching is small. 

Support for this conclusion comes from several types of circumstantial evidence. Just 

. 2 0  , o | • i i 

- f /  "i / 

s I I I  

! I I i I I 

O0 15 ~0 ?5 I00 r25 BO 

Figure 14. Mean film thicknem ~ to theory for ~ film (opm symbols are for test 
,ection 1], cioeed for HI). 
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at the flooding point the film thickness and the pressure gradient are high (see figures 7 
and 10, part I). As the gas rate is increased both of these quantifies decrease. Thus, the 
data of figure 14 tends to the left and downward as indicated by the arrow with increasing 
gas rate. A study of the film thickness fluctuations as shown in figure 14, Part I shows that 
the RMS film thickness fluctuation is likewise largest for the data at the lowest gas rates 
and d e e ~  with increasing gas rate, just as the switching model would predict and with 
the correct order of magnitude of fluctuation. 

The dominance of  the switching at lower gas rates is also evident from studies of cross 
covariance of the film thickness. These measurements were carried out in test section 
configuration C between stations B and C located 0.16m apart (see part I, figure 1). The 
cross covariance function is defined as 

p (T ) = 
Lira ~'s(r)6b(t + r) dt 
..-*cO 

(~,~ 16, BIIP, MS~, C)l l ldS 

where 

 'ft) =  ft) - (6) 

Lira - if(t) dt 

(6~u~s) z = Lira (~,)2 dt 
T-*cO "T 

and ¢ is the delay time. Typical results for four gas rates at each of  the four experimental 
liquid feed rates appear in figures 15-18. In each case, curve ,4 represents the gas rate at 
flooding, the point at the furthest fight for that liquid rate on figure 14. Curve D represents 
the highest gas rate and is the point furthest to the left for that liquid rate in figure 14. 

A wave mechanism for flooding in which well developed roll waves move upward 
should result in a well defined peak in the cross covariance located at a delay time, ~, equal 
to the time it takes the wave to travel between the two stations. However, a study of figures 
15-18 show that such peaks are not present for curves A and B which essentially span the 
range of flow rates from the start of flooding to all upflow. In these curves the normalized 
standard error is estimated to be 0.032 and peaks falling in the amplitude range 0.064 

0.30 

• ' !  0.20 

i O.iO 

o~o 

N 

i -O jO I 

I~ F • 310 
WQ, it1/le¢ 

A • 0.03211 
• • 0.031t) 
C • 0.0493 
D • 0.0524 ¢ 

1 I 1 l 
0.12 0.24 0 .56  0 .48  0 . 6 0  

TIME DELAY IN ~ C .  

Figure I 5. Cross covariance data (stations B and C, test section Ill'). 
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cannot be considered statistically si~mificant. At higher gas rates where uniform upflow of 
the film takes place (curves C and D) the presence of waves travelling upward is clearly 
indicated by well defined peaks. In contrast, a mechanism based on random switching 
between the multiple possible states of the system can be expected to result in a cross 
covariance that is distributed more uniformly over all delay times precisely as shown by 
these curves over the range of flooding and flow reversal (curves A and B). 

Hewitt e t  a l .  (1965) demonstrated that for concurrent upflow of climbing films the 
pressure gradient displays a minimum with increasing gag rate and that the fluctuations 
in film thickness were greatest at the lowest gas flow rates just at tran.qltion and were 
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significantly less for gas rates above the minimum. This suggests the path of the system 
to be that shown in the sketch of figure 19. The first section of the data fall inside the 
upflow loop CUE with switching taking place between the two states and the mean film 
thickness approaching the intersection of the two branches at U as the gas rate increases. 
As a result, the 61m thicknesses in the two states approach one another and the fluctuations 
decrease. As the gas rate is increased further, the system follows the uniform upflow branch 
along UE with the shear increasing and the film thickness decreasing and displaying only 
smaller fluctuations as observed from experiment. Along this branch the fluctuations are 
caused by the waves which exist on the surface. 

Further evidence for this switching theory is provided by a study of wall shear stress 
as calculated from the data compared to theoretical values. Figure 20 is an exapanded view 
of the ratio of wall shear stress to the Nusselt value for the same ,quid flow rate in the 
film, The theoretical expression for this quantity is 

T~ 
[29] 

and this has two branches because for each F there are two values of  RN. 
Values of the time average ~. were computed from the time average film t]~lGt~u and 

pressure gradient data using [22]. At each experimental point the upflow rate in the film 
is known so that ~M and ~ .  can be calculated. The resulting experimental data are shown 
as symbols. It is clear that on average the shear stress is negative (downward directed). 
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Figure 19. Path in the 6-~ plane. 
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However, the mean experimental values which are measured to fall withing the loop can 
be explained only if conditious switch between several possible states of the system. In fact, 
these data suggest that the states oscillate between uniform upflow and the "U"  state where 
the wall shear is zero. A reasonable estimate of ~,,/~, is the arithmetic average of the two 
ratios of any F. 

In part I experimentally determined values of wall friction factor are reported. It is now 
possible to explain these anomalous trends of  the results. From the definition of friction 
factor and the theoretical expression for wall shear, 

, . =  - 'J .5 S ] [30] 

the following expression is derived 

24 /., = ~ ¢ , ( F )  [31] 

where 

¢(F)= 3 ~f-~o F 
l - ~ RN 

[32] 

Now it is seen that for liquid films f., depends on both the liquid Reynolds number and 
the dimensionleu inteffacial shear, F. For upflow there are, of  course, two values off,, for 
each F corresponding to the two values of RN. Thus for each ReL there is a r a n ~  of values 
within which f., can fall. Figure 21 shows curves for f., vs ReL for two liquid feed rates 
taken from figure 20, part I. Values of F were determined from experiment along the curve 
and these were used to calculate the bounds of the possible values off,,. The result shows 
that the theoretical values bound the experimental ones. It further shows that for films, 
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the concept of friction factor is not a particularly useful one to calculate wall shear. Clearly, 
study must now be directed to the dynamics of the switching process. 

CONCLUSIONS 

Three new mechanisms for flooding are considered in this paper: (a) Flooding takes 
place as a result of switching between stable states of the system some of which cause 
upflow. The extent of upflow depends on the fraction of time the system is in the upflow 
state. This model is consistent with measured values of mean and RMS film thickness, the 
characteristics of the film thickness time trace and measured values of wall shear stress. 
(b) Flooding takes place as a result of the system exceeding the propagation velocity of 
a kinematic wave. (c) Flooding takes place as a result of  entrainment. The mechanism 
which controls in any given application is the one which is reached first as the gas rate 
is increased. Other mechanisms may also be operative. 

The idea of switching is suggested as an explanation to explain anomalous results on 
the film thickness for upward concurrent film flow. 
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